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1 Abbreviations, Definitions, and Conventions

2021 - When appended to the name of something, typically a model or other analysis, 2021 refers to the first year for which
the model or analysis results will inform planned or executed work. The models documented herein are the 2021 models —
they are used to inform 2021 work plans. Note that the 2021 modeling and analysis work was performed during the
calendar years 2019 and 2020. When the year is omitted, 2021 may be assumed.

RaDA - The team that created the model is the Risk and Data Analytics team (RaDA). The team, and its models and
computer code, have formerly been referred to as Distribution Asset Risk Management (DXARM) or Distribution Risk
(DxRisk).

MaxEnt — A Maximum Entropy model applied to spatial range estimation. The name given to a family of models that seek to
maximize the information entropy* (i.e. instead of the likelihood or some other optimization criteria) of the probability
distribution associated with a given set of conditions — in this case, ignition probability, given environmental and asset
characteristics. It can also be interpreted as finding the least unique distribution that fits the underlying data.

Maxent - Name of the software used to perform MaxEnt modeling.

WMP - Wildfire mitigation plan. The official expression of PG&E plans as designated by SB-901 to mitigation wildfire risk
that includes (non-spatial) MAVF wildfire risk calculations.

Raster data — “Pixelated” spatial data - for example wind speed, elevation, or conductor material — conforming to a well-
defined map projection that assigns a geographic coverage area (i.e. a polygon on the surface of the globe) to each data
pixel. Gridded weather data in the form of polygons with associated traits is a good example of raster data

Vector data — Tabular data — for example asset IDs and attributes - associated with specific spatial geometries composed of
points and lines and conforming to a well-defined map projection that assigns each point to a specific location on the
surface of the earth. EDGIS contains vector data on grid assets.

! Information entropy is the average level of uncertainty inherent in an outcome derived from a set of variables or
covariates
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EPSG:32610 — The official projection of PG&E territory topography/geospatial area used for this project - WGS 84 / UTM
zone 10N —which has relatively little distortion over California (i.e. the distortion caused by projecting the 3D surface of the
earth to 2D map data) and whose units are meters from a fixed spatial location.

Asset attribute data — Data on the characteristics of grid assets. Examples include conductor size, materials, proximity to
the coast, or splice counts.

Grid pixels — The subset of raster locations that have grid assets within their boundaries. This modeling was performed
using 100m x 100m grid pixels as the corpus of all locations for which input data is needed and predictions will be made.

Fire-season — The period from June 1 to November 30 capturing the typical period of hot and dry weather in PG&E’s service
territory.

HFTDs - High Fire Threat Districts — Areas within California with elevated (Tier 2) and extreme (Tier 3) fire threat, as
developed under CPUC rulemaking R.15-05-006 and adopted by the CPUCs Safety and Enforcement Division. All 2021
modeling was restricted to ignitions and covariates within the HFTDs.

Covariates — The data used as explanatory variables in the formulation of a MaxEnt model. They must be spatially resolved
and available for every location for which a prediction will be made such as the number of trees or average precipitation.

Ignition probability — Unless otherwise specified, the odds of at least one ignition within each 1200m x 100m grid pixel per-
fire season, estimated using MaxEnt as described in this document. Also known as the likelihood of risk event, or LoRE.

Ignition consequences — The spatial data set, based on Technosylva fire simulations under dangerous fire conditions and
calibrated to be compatible with PG&E’s reported MAVF CoRE values, that multiplies the ignition probability (LoRE) for each
grid pixel to produce pixel-level wildfire risk.

Ignition risk — Ignition probability x ignition consequence — balances the severity of an outcome against its
likelihood to assess the overall danger associated with potential ignitions at a given locations.

gridMET — A dataset of ~4kM resolution daily meteorological data (derived from satellite imagery), covering the contiguous
USA from 1979 to the present.:

RTMA - Real-Time Mesoscale Analysis. A NOAA hourly weather raster data product at 2.5kW resolution with hourly
timesteps. RTMA has only been available since mid-2015.2

MAVF - Stands for “Multi-Attribute Value Function” and refers to the utility-specific risk calculation methodology
developed in accordance with principles established by the SMAP Settlement Agreement D.18.12.014

MAVF Consequence Dimensions — The impacts of a risk event such as wildfire or other utility-related events that include
damage to equipment, loss of service, and threats to public safety. MAVF captures risk consequences via Reliability,
Financial, and Safety dimensions in natural units and converts these into a unitless risk score known as the Multi-Attribute
Risk Score (MARS) as discussed in PG&E’s 2020 RAMP Report. We are primarily interested in the multi-

attribute CoRE values for ignitions in this document.

CoRE - Consequence of risk event used in the MAVF framework. CoRE is multi-attribute ignition consequence for
our purposes and will often just be called “consequence” in our documentation.

LoRE - Likelihood of risk event used in the MAVF framework. LORE is the ignition probability for our purposes.

EORM —Enterprise and Operational Risk Management — the department within PG&E responsible for identifying,
quantifying and tracking risk at the enterprise level. EORM implements the company wide MAVF risk calculations.

RAMP - Risk Assessment Mitigation Phase of the General Rate Case proceeding. PG&E filed its 2020 RAMP Report A.20-06-
012 in June of 2020.
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Red Flag Warnings — Red flag warnings (RFW) are issued by the National Weather Service when extreme fire weather

(i.e. hot, dry, and windy) conditions are predicted. Red flag warnings are issued for specific geographies and time ranges. In
the context of spatial consequence calculations, we are interested in the spatially differentiated expected count of red flag
warnings for all area of the grid.

Technosylva — Fire simulation software whose propagation and consequence outcomes are based on available fuels,
topography, and weather data; as well as building structure and population data layers. Technosylva simulation outputs are
used as the source of spatially resolved fire severity data that is the primary input into the spatial consequence
calculations.

FireSim — Technosylva’s fire simulation model
WRRM - The Wildfire Risk Reduction Model developed by Technosylva

FBI —Technosylva’s Fire Behavior Index. A scale of 1-5 that captures fire severity as a function of flame length (intensity of
burn) and rate of spread. FBI of 3 or greater is expected to require aggressive suppression.

CPZ - Circuit protection zone — the set of all assets protected by a specific protective device. Also referred to as Circuit
Segment (CS).

ACSR- aluminum conductor steel-reinforced
Al - aluminum

AWG - American Wire Gauge

CPUC - California Public Utilities Commission
Cu - copper

EDGIS - Electric Distribution Geographic Information System
K - Kelvin

Km - kilometers

kPa - kilopascals

m - meters

mm - millimeters

NED - National Elevation Dataset

PSPS - Public Safety Power Shutoff

s - seconds

SME - subject matter expert(s)

TPI - Topographic Position Index

USGS - United States Geological Survey

ROC-AUC - receiver operator curve — the area under the curve, also referred to as “AUC”, is a metric used to evaluate model
performance.
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2 Executive Summary / Overview

Catastrophic wildfires have become an existential threat to the State of California and pose a significant threat to the safety
and economic future of the State’s residents as a result of increasing population growth into the wildland urban interface
(WUI) and changing climatological conditions. The frequency and severity of these catastrophic wildfire events has
increased dramatically over the last 10 years. PG&E recognizes its electrical equipment has been associated with the
ignition point for a number of these fires and is working to understand these catastrophic events to maximize planned risk
reduction activities. However, PG&E recognizes that the historical methods for understanding and managing wildfire risk
need to evolve given the heightened frequency and severity of wildfires. In order to meet this heightened wildfire risk,
PG&E has developed a set of models to identify areas of highest potential for ignitions and consequence. PG&E is
committed to improving its modeling capabilities as the available information and understanding of wildfires improves.

This document provides a detailed overview of PG&E’s current wildfire risk modeling approach: the 2021 Wildfire
Distribution Risk Model. This model supersedes the prior iteration of wildfire risk models developed in 2018 (the 2019-2020
Wildfire Risk Model). Key objectives for the 2021 Wildfire Distribution Risk Model are:

1. Provide situational awareness of risk,
2. Enable risk-informed decision making and
3. Enable PG&E to develop line-of-sight on risk reductions from wildfire risk mitigation initiatives.

Recognizing that risk-informed decision making is desired for both asset investment workplans developed on an annual
basis and operational decisions, such as PSPS, PG&E has and is developing models specific to the temporal needs of each
situation. There are primarily two forms of models that can be used to address wildfire risk. First, planning models support
annual workplans and are based on either worst-case conditions such as weather and fuels or cumulative probabilities of
failure or ignition. The 2021 Wildfire Distribution Risk Model described herein is a planning model for the Electric
Distribution system. Second, operational models, such as those used for PSPS events utilize real-time weather, fuels data,
and asset conditions as reflected by maintenance tags or recently completed asset hardening. The Large Fire Probability
Model (Distribution) or LFP, Model, is an example of an operational model. Given the respective application of planning
and operational models, planning models are updated on an annual cadence while operational models are updated as
frequently as weekly during fire season.

Following the Electric Operations Risk Framework, outlined in section 2 that provides a systematic approach to risk
assessment and mitigation, the 2021 Wildfire Distribution Risk Model seeks to quantify the risk of wildfire represented by
the probability of electric grid infrastructure caused ignitions combined with the consequences if that ignition propagates to
a wildfire. In its entirety, the 2021 Wildfire Risk Model is a set of models that represents failure modes, or risk drivers,
underlying ignitions and the consequences of wildfire. These models comprise the components of the wildfire risk formula:

Wildfire Risk = Ignition Probability x Wildfire Consequence

For the first part of this formulation, the “Ignition Probability” portion of the 2021 Wildfire Distribution Risk Model is
modeled according to the risk drivers identified in PG&E’s 2020 RAMP Report for wildfire risk. From these risk drivers, the
2021 Wildfire Distribution Risk Model developed probabilities for vegetation and equipment failure caused ignitions as they
represent 38% and 26% of the grid related ignitions respectively. Within equipment failures, the 2021 Wildfire Distribution
Risk Model has developed probabilities for conductor failures. Future modeling efforts will add failure models for other
drivers such as 3" party contact and for other electric grid equipment such as poles and transformers. The modeling
framework established with this model will accommodate the future addition of such models.

The predictive power of these risk driver-based models has been greatly improved over the 2018 model in several areas.
First, the 2018 model was trained on outages as a proxy for ignitions. Using advanced statistical techniques such as
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separating the data in to training and test sets and supported by improved data and a more efficient algorithm, a true
ignition probability model was developed. Improved data sets have also fueled an improvement in model granularity from
the circuit and circuit segment level to 100-meter pixels along the electric distribution lines. Finally, a predictive algorithm
called MaxEnt, (a modeling approach often used in biological and environmental application for the identification of species
ranges by habitat) was utilized due to its compatibility with available data and modeling objectives. In particular, MaxEnt
has the following characteristics: ability to work with spatially explicit inputs and outputs, support for presence/absence
probability prediction, ability to work with uncertain location data (i.e. compensating for location uncertainties in historical
ignition data), ability to work with relatively few “positives” (i.e. Ignition locations) in a sea of negatives, tendency to
converge well with modest amounts of training data, and machine learning heritage which ensures prediction performance
is prioritized over “in-sample” training data fit.

The “Wildfire Consequence” portion of the 2021 Wildfire Distribution Risk Model focuses on fire impacts in natural units
such as acres burned, number of structures impacted, and variables describing the nature of the fire such as flame length
and rate of spread. The key improvement for the 2021 Wildfire Distribution Risk Model is tied to the advanced modeling
capabilities of the Technosylva fire simulation tools. In the 2019-2020 Wildfire Risk Model, REAX Engineering provided
simulations that relied heavily on the concentration of fuels (based on LANDFIRE 2014 data) to determine the potential for
an ignition to propagate to a wildfire. While informative, the Technosylva simulation tool improves on this capability by
firstly using an updated ground fuels dataset (LANDFIRE 2016 with fire disturbance updates) and also by modeling what fire
science refers to as ladder fuels whereby an ignition will propagate from low fuels, such as grass and brush, to increasingly
denser fuels leading to treetops (crowns), as well as updated buildings and population data layers. The result is a more
accurate representation of the potential consequences of wildfire in the wildland urban interface and the broader Tier 2
and Tier 3 HFTD areas modeled. Future versions of the consequence model will consider additional areas in the PG&E
distribution system.

Bringing the improvements to the both the Ignition Probability and Wildfire Consequence portions of the model together,
the 2021 Wildfire Distribution Risk Model now provides an updated and improved measure of wildfire risk. The 2019-2020
Wildfire Risk Model provided a relativistic measure that was instructive for prioritizing circuits and circuit segments, but it
did not allow for measuring the degree of risk between those segments. The 2021 Wildfire Distribution Risk Model provides
this capability as the risk scores are absolute scaled units. As a result, risk values can now identify how much riskier a
location is compared to another, risk can be more accurately compared across wildfire and PG&E'’s other risk events, and
the actual value of risk reduction is now more easily computed.

Even as the predictive power of the 2021 Wildfire Distribution Risk Model has been greatly improved as compared to the
2019-2020 Wildfire Risk Model, PG&E is continuing to develop and refine its risk modeling. The 2021 Wildfire Distribution
Risk Model has several limitations; it does not include transmission facilities, has not yet been used to generate risk
reduction scenarios matching mitigation plans, and for equipment-involved probability of ignition the model only includes
conductors at this time. In 2021, PG&E intends to develop the 2022 Wildfire Distribution Risk Model which will include
certain upgrades to the 2021 model and will include data on additional electrical equipment (e.g., poles). In 2021, PG&E is
also working to develop a 2022 Wildfire Transmission Risk Model for its transmission facilities that will be similar to the
2021 Wildfire Distribution Risk Model. Finally, PG&E is also working on a pilot Probabilistic Risk Assessment or “PRA” model.
The PRA is still conceptual, but, if successfully developed, will integrate all models into a single electric system view of
wildfire risk. PG&E is working to develop a reference model of the PRA in 2021 and potentially, depending on the
effectiveness of the reference model, to use the PRA for planning in 2022. Improved models will provide more actionable
insights that will enable more effective and efficient workplans and allow PG&E to mitigate the risk of wildfire for the State
of California and our customers.
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3 Document Usage

This document provides a comprehensive overview of all modeling activity that comprises the 2021 Wildfire Distribution
Risk Model for a general audience, with more detailed and technical appendices for all major topics. The complete set of
topics covered are listed below in Table 1. The next few sections of this document provide a high-level overview of the
motivations behind and context for the 2021 risk modeling effort. It is intended to place the modeling work within its
strategic and regulatory context and provide a high-level guide to all aspects of modeling performed with discussion of
performance and applications. It can be used to understand the vision behind the risk modeling effort and the plans for
future developments as well as to gain an executive summary level understanding of the modeling and results.

Following the main body are appendices that cover the Vegetation Probability of Ignition Model and Equipment Probability
of Ignition Model in greater detail. These tie to the vegetation and equipment risk drivers identified in the Wildfire risk
discussed in PG&E’s RAMP Report. These appendices can also be used to understand the data utilized in each model, the
relative influence of the different data sets, the precision of the model in predicting ignitions, and areas for future

improvement.

The modeling appendices are, in turn, supported by two additional appendices on key methods: Appendix 3: Ignition
Probabilities Methods 2021 provides details on the application of the MaxEnt algorithm to provide spatial distribution grid
ignition probabilities; and Appendix 4: Ignition Consequence Methods 2021 provides details on the application of the
Technosylva simulation data to develop a consequence data set in the MAVF framework, referred to as MAVF CoRE, that is
calibrated to the MAVF system level and tranche level scores in the RAMP Report.

In addition to these five written topics, several presentations were developed and used to conduct technical reviews
internal and external to the company. These are also available as separate files that can aid in understanding the 2021
modeling, but they were not created to directly support this document.

TABLE 1 - INDEX OF 2021 WILDFIRE RISk MODEL TOPICS (APPENDIX TOPICS ARE CLICKABLE CROSS-REFERENCES)

Section and Topic

Description

2021 Wildfire Distribution Risk Model Overview

The main body of this document - summarizing the context for this
work and providing a high-level overview of the approach and
results.

Appendix 1: Vegetation-caused Ignition Risk Model
2021

Description of modeling vegetation-caused ignition probabilities
and related risk results used to inform 2021 EVM planning and
prioritization.

Appendix 2: Conductor-Involved Ignition Risk Model
2021

Description of modeling conductor-involved ignition probabilities
and related risk results used to inform System Hardening planning
and prioritization.

Appendix 3: Ignition Probabilities Methods 2021

Detailed coverage of the motivation behind and methods used to
employ maximum entropy models to make spatial estimates of
ignition probabilities (independent of specific applications)

Appendix 4: Ignition Consequence Methods 2021

Detailed coverage of the methods and modeling behind the
development of the MAVF-compatible spatial consequence data
used in risk calculations based on the Technosylva model.

EVM Risk Model 2021 - Lunch n' Learn

Presentation for a general (internal PG&E) audience on the EVM
Risk model.

EVM Risk Model 2021 - Utility Analytics conference

Presentation for a Utility Analytics audience on the EVM risk model

Conductor Risk Model 2021 - Lunch n' Learn

Presentation for a general (internal PG&E) audience on the
Conductor Risk model.
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4 Objectives, Framework

4.1 Project Objectives
The 2021 Wildfire Distribution Risk model project objectives were to develop a model that:

1. Provides situational awareness of risk
2. Enables risk-informed decision making
3. Enables PG&E to develop line-of-sight on risk reductions from wildfire risk mitigation initiatives

In the pursuit of these objectives, PG&E wildfire risk modeling maturity aimed to progress from relative risk models at the
circuit level with system level risk reduction and RSE capabilities to automated quantitative wildfire risk models that include
risk reduction and Risk Spend Efficiency (RSE) evaluations ultimately at the asset/structure level. The 2021 Wildfire Risk
Model is the second iteration of risk models and is a significant step in improving PG&E’s wildfire risk modeling capabilities
as measured by the CPUC Utility Wildfire Mitigation Maturity Survey (Maturity Survey).

To accomplish the improvements from the 2019-2020 Wildfire Risk Model to the 2021 Wildfire Distribution Risk Model, a
systematic Risk Modeling Framework was used to develop the capabilities identified in the Maturity Survey.

4.2 Framework

The following systematic Risk Modeling Framework has been adopted to develop the capabilities identified in the Maturity
Survey. This general framework is shown in Figure 1 - Risk Modeling Framework.

* Tie to EORM identified risks

« Define problem

« Define roles and responsibilities
* Outline process steps
Scoping * Outline desired outcomes

* Verify completion of mitigations
* Track risk reduction

* Daily Risk dashboard
* Report progress back to EORM, Risk Data Intake

cPuc Mitigation

* Document data sources
« Define data accuracy
* Data Conditioning

Asset Data
Foundation

« Standard decision matrix template * Exploratory Data Analysis (EDA)
* Tools to tie scores to budgets * Root Cause - FMEA

» Optimization routines to produce, Risk Risk ID * Documentation of FMEA results

investment scenarios Management ) S|

* Model Development A

* Model Validation )

* Develop riskscores o

* Developing accuracy estimates

* Developing reduction scores for mitigation options E

» Developing risk spend efficiency scores for mitigation options [:J

FIGURE 1 - RISk MODELING FRAMEWORK

The specific framework steps for the 2021 Wildfire Risk model development are outlined below, beginning with the model
Scoping and working through the Data Intake, Risk Identification, Risk Assessment, Risk Management steps to conclude
with Risk Mitigation and reporting.
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Scoping — defining the problem and desired outcomes. Beginning with the Scoping step, the 2021 Wildfire Distribution Risk
Model is tied to the wildfire risk bowtie and risk scores outlined by PG&E’s EORM department in our 2020 RAMP Report.
Examples include the development of risk scores calibrated to the system MAVF scores and modeling failure modes for the
identified wildfire risk drivers. During the scoping step, key desired capabilities were identified tying to the Maturity Survey,
such as the improved level of granularity, the ability to aggregate risk scores to different levels such as circuit segments, and
the comparability of risk scores to facilitate the development of risk reduction and RSE values.

Data Intake - key data sets are identified and prepared for modeling. For the 2021 Wildfire Distribution Risk Model,
vegetation data, ignition data, and asset data were critical data sets that were identified and prepared for modeling usage.
As LIDAR data was not fully available at this stage, satellite-derived vegetation characteristics data was provided by one of
our project partners, Salo Sciences.

Risk ID - Failure Modes Effect Analysis (FEMA) and Exploratory Data Analysis (EDA) are employed to understand and
identify the root cause and characteristics of the problem. From the identified risk drivers in the Wildfire risk bowtie,
vegetation-contact and conductor-involved ignitions were the most frequent ignition drivers. Using a previously developed
FMEA, EDA was conducted on the identified data sets in the Data Intake step. EDA begins the process of gaining insight
from the data before formal modeling begins. This includes understanding the accuracy of the data, patterns including
outliers and anomalies, as well as identification of potentially predictive relationships within and between data sets.

Risk Assessment - development of the models and model features. In this step, the model algorithm is selected and
trained on the ignition data to provide spatial probabilities of ignition. The Wildfire Consequence Model data was also
developed from the Technosylva simulation model. To quantify the predictive power of the model, precision assessments
were developed. These metrics informed iterative adjustments that were subsequently made to improve predictive ability.
The resulting MAVF risk scores were then calibrated, and validation exercises were held with the Vegetation Management
and Distribution Asset Strategy teams that would ultimately use the models to inform their 2021 workplans. At this point
the 2021 Wildfire Distribution Risk Model was reviewed and approved by the Wildfire Risk Governance Steering Committee
(WRGSC) which is led by PG&E'’s Chief Risk Officer and made-up of a cross-functional officer team.

Risk Management - insights from models are used to develop work plans. The modeling insights are combined with
project factors and variables not incorporated in the models. For example, tree species data was not widely available
enough to be fully incorporated in to the EVM Risk model. As a result, the Vegetation Management team applied species
data as an overlay to the Vegetation Risk Model to produce the 2021 EVM workplan. With the Distribution Asset Strategy
team, model data is combined with information on terrain, customers locations, and customer counts to identify the
preferred mitigation alternative. Similar to the risk models, the resulting workplans are also reviewed and approved, as part
of this step, by the WRGSC.

Risk Mitigation — monitors and reports the drawdown of risk as work is performed. This is accomplished with model-
assigned asset-level risk values as well as validating the model against actual system performance metrics. For example,
ignition probability models are validated against actual annual ignitions to capture insights into future improvements. As
modeling capabilities improve monitoring the risk drawdown can become a key operational metric.

5 Modeling Methods: Estimating Risk

The 2021 Wildfire Distribution Risk Model formulates risk in probabilistic terms in a manner that is similar to and
compatible with the MAVF risk framework established by the SMAP Settlement Agreement. The fundamental concept is
that the risk associated with an event, such as a fire ignition, can be expressed as the product of the probability of the event
happening and the consequences if it does happen. The MAVF framework calls these the likelihood of risk event (LORE) and
the consequence of risk event (CoRE), respectively. In the 2021 Wildfire Distribution Risk Model, the notation P(ignition) for
LoRE ignition probability and C(ignition) for the CoRE consequences of an ignition, is used, as shown below:
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Risk = P(ignition) x C(ignition)

The heart of the 2021 risk model is the effort to estimate ignition probabilities and ignition consequences for distribution
grid locations in the Tier 2 and Tier 3 High Fire Threat Districts (HFTD). In our documentation we have separated out the
more technical discussion of the methods used for estimating P(ignition) and C(ignition) from their application in
vegetation-caused and conductors-involved risk models. This overview section discusses all of four of these topics in the
sections that follow, but each topic also has a dedicated Appendix that provides significantly more detail on each topic.

5.1 Methods: Ignition Probability

To answer the question of where ignition events are likely to occur, spatially resolved fire season ignition probabilities have
been estimated using maximum entropy models (MaxEnt). The MaxEnt model provides relative scores or, if properly
calibrated, probabilities for fire-season ignitions per “pixel” of input data. MaxEnt models take the set of locations of
ignitions under study and rasterized (i.e., pixelated) data on environmental conditions and asset attributes as explanatory
covariates for all locations with grid infrastructure as inputs and output rasterized maps of ignition probabilities.

MaxEnt models have been successfully applied in ecology to the problem of estimating a species’ range (i.e., the physical
extent of its suitable habitat), given a set of locations where members of that species have been observed and the
corresponding environmental conditions at those locations and all candidate locations for the range. In that context, the
model assigns a score to every location that captures how similar the conditions at that location are to the locations where
the species was observed. There is a correspondence between MaxEnt applied to species observations and ranges and
ignition locations and at-risk locations —looking for the “range” of grid-caused wildfires - the environmental conditions and
asset attributes associated with elevated wildfire probabilities. PG&E has applied MaxEnt methods to event occurrences
and their proximate asset and environmental conditions contrasted with the background conditions everywhere else along
the distribution grid to identify the locations most likely to experience similar events in the future.

Special topic: Conceptual explanation of how MaxEnt models work

For the 2021 Wildfire Distribution Risk Model, the objective is to identify which environmental conditions and
asset attributes (collectively called the model covariates) are more common among ignition locations than they
are among all distribution grid locations. For example, tall trees are more common among vegetation-caused
ignition locations than they are among typical Distribution grid locations.

Metrics of dryness, HFTD tier assignments, conductor materials and size, and others, can all be checked for such
patterns. The ratio of covariate value prevalence at ignition locations to their prevalence across all grid locations is
called the relative occurrence rate. MaxEnt provides a way of estimating the relative occurrence rate given a fairly
modest number of ignition locations. The way it does this is to fit a statistical distribution of covariate values for
ignition locations that is consistent with the values at known ignition locations, but otherwise as similar as
possible to the distribution of values found everywhere else along the Distribution grid.

The similarity criteria described above is enforced using a metric called the relative information entropy between
the ignition locations and the Distribution grid locations, where the larger that metric is, the more similar the two
distributions are. For this reason, the overall approach is referred to as a maximum entropy or MaxEnt estimation
of the relative occurrence rate.

When multiplied by the fraction of all grid locations that experience fire-season ignitions annually, the relative
occurrence rate is normalized into a distribution that provides the annual probability an ignition will occur for all
combinations of values of the covariates. This distribution can be used to look up (aka predict) annual ignition
probabilities based on the covariate values found at each Distribution grid location.
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51.1 Why MaxEnt models?

Different modeling approaches have different strengths and weaknesses and there are always better and worse performing
model specifications under any given approach. The selection of a MaxEnt approach was informed by the characteristics of
available data and the spatial nature of the planning questions the model needed to address, with multiple specification
evaluated to identify models with strong predictive power as well as the explanation of inputs.

Model performance (and selection) should be determined quantitatively based on out-of-sample prediction accuracy for
most planning purposes, but performance can only be assed for specific/well specified/narrow questions. In other words,
there are no “silver bullet” models that perform well for all questions asked of them. The most important predictions we
make using the MaxEnt models is the location-specific fire-season probability of ignitions based on patterns in ignitions
from 2015-2018, measured against out-of-sample 2019 data. We have not had the bandwidth to mature all possible
alternative model formulations for quantitative comparison to MaxeEnt. However, it does perform well compared to earlier
models and there are very good reasons we opted to employ it:

(1) MaxEnt, in the lineage of usage we have adopted, is spatially explicit. It is used to answer, “where can | expect X to
occur”, which is the most common structure of the questions we’'ve been asked to address. It takes spatial data
inputs and outputs rasterized (aka pixelated) spatial results that can map directly over grid locations.

(2) Ourevent data is uncertain around where exactly each ignition occurred and which specific device failed. Ignition
locations are recorded in the field and captured where the data acquisition device was, not where the ignition
began. Further, there can be GPS signal acquisition challenges in the field that result in location errors. The result is
that the outage data associated with ignitions most consistently records their locations, but they are protective
device locations, not exact ignition locations. Approaches that require direct assignments of ignition indicators to
specific pieces of equipment or precise coordinates of the point of ignition are not viable with currently available
data. MaxEnt works with spatially quantized data and is focused on comparing the distribution of conditions at
ignition locations to all locations, so some imprecision can be tolerated as relatively small permutations in those
distributions.

(3) Unlike traditional “classification” methods, MaxEnt works with “presence only data”, which means that you don’t
need accurate labels for all ignitions or all non-ignitions. This is relevant to the locational imprecision noted above
— we are assigning ignitions with some spatial uncertainty — but also allows us to side-step the technical modeling
issues of the “imbalanced data set” with so few ignitions.

(4) MaxEnt works with relatively small sets of presence data. Ignitions are mercifully rare — good for us all, but bad for
statistical power. Any “data hungry” approach whose best performance requires thousands (or more) of data
points to fit well, will not work with the reportable ignitions data set.

(5) Under the hood, MaxEnt has similarities with logistic regression, which is a standard choice for “classification”
problems like ignition occurrence. However, MaxeEnt models are protected from overfitting to training data via
regularization and make estimates with presence-only data.

(6) The Maxent software we are using generates derived features from combinations of and breakpoints within the
model covariates, accounting for things like covariate interactions, step changes in response, etc., and
regularization, eliminating features that don’t improve predictive power. These are not unique to Maxent but are
necessary to achieve good out of sample predictive performance.

(7) The Maxent software used performs out of sample prediction testing, and reports modern/standard classification
model performance metrics, like the ROC figures, ROC-AUC values, precision, recall, etc. These form the basis of
our ability to objectively quantify its performance and compare to other approaches. While not unigue to Maxent,
these are required capabilities of any approach we would consider.
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5.1.2 Datasources and preparation

5121 Ignition data

CPUC reportable ignitions were selected as the training “event” data for the 2021 Wildfire Risk Model. The ignitions under
study were filtered to have occurred between 2015 and 2018 (2019 data was used to test model predictive power), within
HFTD Tier 2 or Tier 3, and to have occurred during the fire season (Jun. 1 — Nov. 30). Ignitions used to train the vegetation-
caused ignition probability model had to additionally be labeled as caused by vegetation contact and those used to train the
conductor-involved model had to be labeled with conductors as the asset that failed leading to the event. Note that those
two sets of ignitions overlap in the case where vegetation damaged a conductor.

Conductor-involved ignitions: There were just under 850 outages (whose locations we use as ignition locations) associated
with reportable ignitions that involved conductors from 2015 through 2018. A little under 300 of those occurred in HFTD
Tier 2 or Tier 3. Just over 240 of the remaining ignition outages occurred during the fire season. Those events were the
ones used to train to 2021 conductor-involved ignition probability model. 60% of those were vegetation-caused; 30% were
caused by equipment failures, and the rest had a few miscellaneous causes, including animals and 3™ party contact (mostly
car accidents).

Vegetation-caused ignitions: There were just under 470 vegetation-caused ignitions from 2015 through 2018. Right around
260 of those were found in HFTDs Tier 2 and Tier 3 and just over 220 additionally took place during the fire season. Those
events were the ones used to train the 2021 vegetation-caused ignition probability model. Over 80% involved conductor
damage and more than 75% were labeled as “wire down” events.

51.2.2 Explanatory variables (aka covariates)

To have a reportable ignition, fault current needs to be generated, the fault current creates an ignition, and the ignition
needs to be viable enough to spread: utility has knowledge of the ignition, the fire travels greater than one linear meter
from the ignition point, and the fire propagates beyond utility equipment. Thus, we understand reportable ignitions to be
the product of assets interacting with their environment over time.

As visualized in Figure 2, the three categories of data categories of data relevant to modeling that process are: (1) asset
attributes (2) spatially varying environmental conditions, determined by location (3) spatio-temporal varying weather
conditions, determined by location and time. We are limited by the data available in each category, so we have prepared as
many potentially relevant covariates as we can identify and lay our hands on.

(1) For asset attributes, we are interested in attributes that can be changed through mitigation and/or those that are
expected to indicate or correlate with degradation. For example, age is expected to correlate with various forms of
degradation, whereas, conductors’ size and materials determine the susceptibility to structural failure and
corrosion, respectively.

(2) For environmental covariates, we are interested in location-specific characteristics that impact vegetation, fuels,
and asset health. For example, the coastal indicator is associated with marine layer salinity, a source of corrosion,
climatic dryness determines the long-term viability of grass, chaparral, and trees, and terrain determines how
sheltered or exposed a location is to wind.

(3) For weather covariates, we are interested in the more proximate environmental causes of failures (like wind and
gusts) and factors that influence ignition viability and spread (like ground cover, fuel moisture, and wind).
However, we are evaluating these on the timescale of entire fire seasons, so covariates must reflect temporal
aggregation, capturing the typical or extreme values of each or some cumulative count or “exposure” to dangerous
conditions across the season(s).

There is a detailed discussion of the “pool of variables” in the ignition probability methods appendix (Appendix 3: Ignition
Probabilities Methods 2021).
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FIGURE 2 - SCHEMATIC OF DATA FLOW THROUGH THE MAXENT MODEL

5.1.2.3 Covariate selection

Modelers us a term “parsimony” to capture the concept that models should be as simple as they can be while still
explaining the underlying process. Parsimony is not objectively quantifiable but is not aesthetic either. Without parsimony,
a model can overfit the training data, undermining its predictive power and the interpretation of any given covariate can be
entangled with the contributions of others like it. We achieved parsimony through two mechanisms: (1) The Maxent
modeling software we used “regularizes” model fit by dropping covariates that don’t contribute to performance gain when
testing out of sample, thus decreasing the risk of overfitting and providing metrics we can evaluate to judge how well it has
done. (2) When in possession of multiple covariates that contain similar information or covariates that are directly relevant
to mitigation, we have made “editorial” decisions about which covariates to include or exclude while checking that overall

performance is not degraded.

5.2 Methods: Wildfire Consequence

PG&E uses MAVF to calculate the consequence of an event. MAVF is a function for combining consequence impacts of the
occurrence of a risk event and creating a single unit-less risk value, known at PG&E as MAVF or MARS. Some of its key

features are:

o |t formalizes trade-offs between different dimensions of consequence attributes (Safety, Reliability and Financial).
e |t captures aversion or indifference over a range of outcomes based on the company’s risk management approach.
e It allows comparisons of risk across the company using a common scoring metric.

52.1 How MAVF Risk Scoring Works

Figure 3 is the MAVF approved by PG&E’s Risk committee for use across company for risk scoring.
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FIGURE 3 - MAVF

The consequence attributes and their respective weights are:

e Financial (25%)

o Safety (50%)

o  Electric Reliability (20%)
e and Gas Reliability (5%)

Each outcome in the Consequence model is assigned a score for these categories which is then aggregated to calculate the
consequence score.

The consequence values assigned to each simulated fire come from these existing MAVF consequence scores. MAVF divides
wildfire risk events into severity categories, modeling each category as a separate set of inputs (think tabulations/counts of
historical ignitions that fit into each severity category) and consequence outcomes.

Because the inputs come from multiple sources into the central risk event calculation and then fan back out to the Safety,
Reliability, and Financial risk categories, each category is called a risk “bow tie” after what it looks like when diagrammed.

The risk bow tie methodology is a structured way of conceptualizing, representing risk across many types of events. It
allows for the risk event to be broken down into the causes, or drivers, of a risk event and the consequences resulting from
the risk event. Groupings of drivers or outcomes can be considered as separate tranches and the consequences of the risk
event can be calculated for each of these tranches. Tranches segment a system of assets into “like” risk groups because
different parts of a system face different hazards, are susceptible to those hazards to different degrees and can result in
different consequences given the same event. For instance:

e Material: plastic is not threatened by corrosion compared to metal
e Location: Earthquake in Oakland vs Santa Cruz
e Ambient Conditions: Proximity to vegetation. (combustible material)

A bow tie (Figure 4) quantifies relationships between drivers and outcomes.
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FIGURE 4 — BOW TIE STRUCTURE

Under the hood, there are as many bow ties as there are tranches (Figure 5).

Tranche N I

Tranche 1
Safety
Reliability
Financial
Safety
Reliability
Financial

Reliability

FIGURE 5 - TRANCHES

Figure 6 below provides an example wildfire bow tie.

Risk Score = Frequency x CoRE

Subdriver Driver Risk Event Outcome Attributes CoRE
Safety
Red Flag Waming b Ritae 00(
Conductor Catastrophic Reliability 12,000
20 Financial
Transformer Equipment -
Othe . Failure B 8% Red Flag Waming Reliability
r % Non-Catastrophic Financial 2
Branch e b 0.1% Safety
; Non-Red Flag Wami T
Dead Vegetation cmwgpmc ng Reliability ;5 1
Financial
Other
Other 150 fyear Non-Red Flag Wamning Reliability
Non-Catastrophic Financial

Event CoRE = Weighted Average of Outcome CoRE = 55
Risk Score = 440 x 55 = 24,200 (0.4% x 12,000 + 8% x 2 + 0.1% x 12,000 + 91% x 2)

FIGURE 6 - EXAMPLE WILDFIRE BOW TIE

PG&E Internal Information © 2021 PG&E Corporation. All rights reserved.

Page 17 of 133



Pacific Gas and
EIE ”.I’-” E” pan =

2021 Wildfire Distribution Risk Model Overview

5.2.2 Deriving Spatial MAVF CoRE Values

What matters for our purposes is that each bow tie produces CoRE consequence values specific to the categories of events
that feed into it and these can become a lookup table for consequence of simulated wildfires as long as they can be
mapped into the same categories.

For the 2021 Wildfire Distribution Risk Model effort, which was designed from the ground up to deliver spatially resolved
results, the challenge was to map MAVF CoRE values onto a spatial grid. Historically, risk assessments using MAVF scoring
have been performed at the enterprise-level without spatially explicit data or models. In other words, the risks are
computed in terms of the expected count and severity of “risk events” but not at their specific locations. The purpose of the
2021 Wildfire Distribution Risk Model is to model the spatial variation in risk so that wildfire mitigation efforts can prioritize
higher risk assets and locations for mitigation. The development of corresponding spatial MAVF CoRE consequence metrics
required mapping the characteristics of every “grid pixel” in the HFTD areas to the categories used to assign ignitions to
tranches of consequence already in use in the MAVF framework. These categories include HFTD areas, red flag warning
conditions, and fire severity

Thus, the spatial consequence values for the 2021 model required spatial estimates of:

1. Asimple spatial indicator of whether a given location is within the HFTDs
. The probability that a location will be under red flag warning at the time of an ignition
3. Aspatial breakdown of the likelihood that an ignition would lead to a small, large, destructive, or catastrophic
wildfire, given its starting location

Given such estimates, the existing MAVF CoRE values from corresponding bowtie tranches could be applied to each
location. The first is very straight forward. We have geo-spatial shape files of the HFTD, so any given location can be
assigned an “HFTD indicator”. The second was more challenging, but there are also shape files available for every red flag
warning called. By stacking those shapes on top of one another, the count of red flag warnings per-fire-season at every
location was calculated and rendered into a probability of a red flag warning for any given day.

The fire severity calculation was by far the most complex component of wildfire consequence to estimate (and the most
significant in determining the MAVF CoRE values). Technosylva fire simulations under extreme fire weather conditions were
used to estimate the likelihood of ignitions growing into fires of Small, Large, Destructive, or Catastrophic extent (these are
PG&E specific MAVF wildfire categories), based on Technosylva's fire characteristics, including:

1. Theburnareain acres

2. The number of structures within the burn area

3. Technosylva’s Fire Behavior Index, assigned on a scale of 1-5 based on the combination of simulated flame length
(ametric of burn intensity) and rat of spread (see Figure 7 below for FBI details)
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ROS (ch/h)

The different values of FBI vary from 1 (Low) to 5 (Extreme) as shown in the next table.

Table 11. FBI class descriptions.

FBI Class Description

Fire will burn and will spread however it presents very little resistance to control and
direct attack with firefighters is possible

Fire spreads very rapidly presenting substantial resistance to control. Direct attack with
firefighters must be supplemented with equipment and/or air support.
VERY Fire spreads very rapidly presenting extreme resistance to control. Indirect attack may be
ACTIVE effective. Safety of firefighters in the area becomes a concern

5 EXTREME Fire spreads very rapidly presenting extreme resistance to control. Any form of attack will
probably not be effective. Safety of firefighters in the area is of critical concern.

Figure 7: Technosylva’s Fire Behavior Index components and description

These characteristics were then used to lookup existing MAVF CoRE values for corresponding tranches and used to
compute fire severity assignments for each of the hundreds of simulations conducted per-location. Then the consequence
for each simulation outcome could be averaged across all days simulated into averages (and other statistical summaries) of
the consequence values for every grid location in the HFTDs areas.

The detailed recipe for using Technosylva simulations and their metrics to create calibrated MAVF CoRE consequence
values is:

(1) Assign ignition simulation locations at regular (200m) spacing along all grid locations within HFTDs Tier 2 and Tier
3.

(2) Tabulate the 452 worst historical fire weather days using historical weather data.

(3) For all locations, run a separate 8-hour fire spread simulation for each day of weather data, recording burn area,
flame length, impacted structures and FBI on a scale of 1 to 5 for each simulation.

(4) Using pre-existing MAVF consequence scores calculated for all combinations of fire severity (Small, Large,
Destructive, Catastrophic), an HFTD indicator, and a red flag warning indicator rendered into a location-specific
probability of a red flag warning, assign each simulation output a consequence score.

(5) The rules developed for assigning MAVF fire size to each Technosylva simulation result are:

a. Small Fire (area < 300 acres)
b. Large Fire (area > 300 acres)
c. Destructive Fire (area > 300 acres & 50+ structures impacted)
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d. Catastrophic Fire (assigned by ratio of Catastrophic to Destructive fires historically)
(6) Compute statistical extracts of consequence scores for all available simulations at each location — most
downstream usage is based on the mean, but variance and others can also be useful.
(7) Assign the resulting mean consequence to each ignition location.
(8) Ensure that simulations can be mapped to all HFTD Tier 2 and Tier 3 grid locations. To do this, simulation output
metrics are associated with a 200m x 200m raster pixel with the ignition point in the center, so the results can be
assigned spatially to any locations within each pixel.

The details of the spatial consequence modeling methods are found in Appendix 4: Ignition Consequence Methods 2021

5.3 Application: Vegetation-Caused Ignitions for EVM

All vegetation-caused CPUC reportable fire season ignitions from 2015 to 2018 within the HFTD areas were used to model
the risk addressed by the EVM program?. PG&E withheld 2019 ignition data for use in testing and validating the out of
sample predictive power of the model. A MaxEnt model was used to estimate spatial ignition probabilities based on those
ignitions. This work was informed by data on vegetation, weather and other environmental conditions. The ignition
probabilities were combined with the MAVF CoRE values from the spatial ignition consequence data set to produce 100m x
100m grid-pixel-level risk scores. The pixelated risks were aggregated within each circuit segment (also called Circuit
Protection Zone or CPZ) in the HFTD areas to produce the risk summaries provided as inputs used to inform EVM planning
and prioritization.

A detailed account of the EVM risk modeling is found in Appendix 1: Vegetation-caused Ignition Risk Model 2021 as well as
slides from a presentation on the modeling for a general audience are found in the document named: EVM Risk Model 2021
- Lunch n' Learn presented 2020_10_21 as well as a separate conference presentation found in the document named: EVM
Risk Model 2021 - Utility Analytics conference presented 2020_10_29.

Ignition likelihood for vegetation in 2021 was determined based on a probability analysis predicting ignitions in 100m x
100m pixels. The Vegetation Probability of Ignition Model was trained on vegetation ignitions limited to fires season events
and CPUC reportable ignitions from 2015 to 2018 and tested using the 2019 ignitions. This data set includes all vegetation
related outages that resulted in an ignition. The modeling technique used was a maximum entropy model which provides a
way of estimating the relative occurrence rate given a fairly modest number of ignition locations. The principle of maximum
entropy states that the probability distribution which best represents the current state of knowledge is the one with the
largest entropy, in the context of precisely stated prior data.

100m pixel representation of P(ignition) output from the Vegetation Probability of Ignition Model for the North Bay is
shown in Figure 8 below - red is higher, blue is lower, non-HFTD conductors are shown in dark grey.

2 Note that vegetation-caused conductor-involved ignitions were also modeled by the conductor model.
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Ignition probability

PRy ES)

Figure 8 — IGNITION PROBABILITY PER PIXEL FOR THE NORTH BAY - RED IS HIGHER, BLUE IS LOWER COLORED GRID PIXELS
ARE WITHIN HFTDS, DARK GRAY GRID PIXELS ARE NOT.

Examples based on the model results rolled up to CPZ summaries are presented below. Interestingly, there are fewer trees
(based on the database of known trees maintained by vegetation management) in areas of high consequence: Figure 9
shows scatter plots of per-CPZ data for all 3,000 CPZs analyzed where the y-axis is the count of trees in each CPZ and the x-
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axis is MAVF CoRE consequence. It shows that higher tree counts tend to be associated with lower consequence values —in
other words, there are fewer trees in locations with elevated fire consequences.
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FIGURE 9 - SCATTER PLOT OF CPZS BY CONSEQUENCE AND TREE COUNT

Figure 10 Shows there is not as strong a relationship between P(ignition) and VMD tree density. But the highest
P(ignition) values are generally associated with CPZs with fewer trees. This is likely due to the fact that reportable ignitions
require dry fuels to grow to reportable proportions (1 m in extent) and areas with fewer trees tend to be hotter and dryer.
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FIGURE 10 - SCATTER PLOT OF CPZS BY P(IGNITION) AND TREE COUNT

Risk is equal to P(ignition) x C(ignition) but we can see that the resulting scores are heavily dominated by Consequence
values. Figure 11 plots the Risk score on the y-axis and the two components of that risk calculation (Consequence on the
left and P(ignition) on the right) on the x-axes. From these, it can be verified that the Risk score is highly correlated with the
Consequence (MAVF CoRE) and less correlated with the P(ignition). This has a lot to do with the fact that the Consequence
values range over more orders of magnitude than the P(ignition) values. If you are prioritizing directly by Risk, you are
largely prioritizing by Consequence, or the ability for a given location to host a catastrophic wildfire.
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FIGURE 11: SCATTER PLOTS PER-CPZ RISK CORRELATED WITH CONSEQUENCE (LEFT) AND IGNITION PROBABILITY (RIGHT)

Variables in the model included meteorology data, PG&E asset data, and remote sensing data from government and private
third parties. A metric called “permutation importance” can be used to quantify how sensitive the model’s predicted
outputs are to random fluctuations in the given variable’s (aka covariate’s) input values. The permutation importance of the
covariates used in the Vegetation-caused Ignition Probability Model are included below in Table 2. The Pool of covariates
section of the MaxEnt ignition probability estimation methods appendix provides detailed information on the meaning and
data source of each of the covariates named below.
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TABLE 2: VARIABLES IN THE VEGETATION-CAUSED IGNITION PROBABILITY MODEL

tree-height-max

100-hour-fuels-
avg
vapor-pressure-
deficit-avg
gusty-summer-
day-pct

HFTD

precipitation-avg

Impervious

specific-
humidity-avg

burn-index-avg

wind-max
temperature-avg

windy-summer-
day-pct

local-topography

tree-height-avg

1000-hour-fuels-
avg

energy-release-
avg

Satellite derived tree height estimates — highest
tree per-raster pixel

standard fire modeling metric of fuel dryness for
fuels about 1-3" in diameter, mean over season

vapor pressure deficit, mean over season

The percentage of days with sustained hourly
wind speeds over 20 mph

High Fire Threat District (2 or 3)
Seasonal daily average precipitation

NLCD impervioushess product - represent urban
impervious surfaces as a percentage of
developed surface

Seasonal average specific humidity

National Fire Danger Rating System (USNFDRS)
Burning Index (BI)

Annual 99th percentile hourly wind speed at 10m
Average of daily maximum temperature in Kelvin

The percentage of days with sustained hourly
wind speeds over 15 mph

The topographic position index (TPI) extracted
from the USGS national elevation dataset

Satellite derived tree height estimates — average
per-raster pixel

standard fire modeling metric of fuel dryness for
fuels about 3-8" in diameter, mean over season

USNFDRS Energy Release Component (ERC)

26.1
% 24.1
kPa 21.6
% 6
4.2
mm 3.1
% 2.8
kg/kg 2.4
2.3
m/s 1.9
K 1.6
% 1
0.8
m 0.8
0.6
0.4

Permutation
Importance (%)

Using these variables, a probability of ignition was assigned for each 100m x 100m grid. These probabilities were indexed
and calibrated to the total expected ignition frequency.

Updates to this model are planned on an annual basis. In 2021, PG&E aims to incorporate LiDAR informed tree species data
so that the predictive power of vegetation caused ignition probabilities will be enhanced to better inform mitigation

programs.
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5.3.1 EVM model validation

The dataset used to train the model achieved an AUC score of 0.73. The 2019 dataset was used as an out-of-sample test
dataset to evaluate the model fit and achieved a score of 0.64 but a randomly withheld test sample from several years
achieved a score of 0.72. The minimal reduction in AUC score between the training and testing datasets gives confidence
that the model is not overfitting to the training dataset but also raises the possibility that the spatial pattern and other
characteristics of 2019 vegetation-caused ignitions deviated slightly from 2015-2018. See the dedicated model validation
section, Discussion: Model Validation and Comparison to Previous Work for more discussion of model validation.

5.3.2 EVM model insights and applications
Insights

Vegetation-caused ignitions quite obviously require the presence of fall-in trees close enough and tall enough to contact
the overhead circuit. Along similar lines, we expect that all else being equal, dryer and windier conditions will favor both
branch failures and fire viability and spread. This explains the sensitivity of the model to tree presence and height data and
to metrics of fuel dryness, gustiness, and vapor pressure deficit. However, there are also some counter-intuitive
relationships that have emerged from the modeling efforts.

First and foremost, tall trees do not tend to be found under either consistently windy or consistently dry conditions. For the
most part, they prefer more benign habitats, but also, their presence lowers local temperatures, increases local humidity
and moisture, and lowers local wind speeds. Dryness and wind are major contributors to wildfire risk, but only when they
are somewhat anomalous compared to prevailing conditions.

The above relationships contribute to another somewhat counter intuitive result — the areas of highest ignition probability
are not the areas of highest ignition consequence. Fires burning in forested areas with mature tall trees are indeed very
dangerous, but ignitions start small and often start on the ground. They are more viable as fires that spread to forested
areas when they originate under conditions that offer a mix of smaller and larger fuels that are drier and more open to wind
th